Locally Connected Deep Learning Framework for Industrial-scale Recommender Systems
نویسندگان
چکیده
In this work, we propose a locally connected deep learning framework for recommender systems, which reduces the complexity of deep neural network (DNN) by two to three orders of magnitude. We further extend the framework using the idea of recently proposed Wide&Deep model. Experiments on industrial-scale datasets show that our methods could achieve good results with much shorter runtime.
منابع مشابه
A Grouping Hotel Recommender System Based on Deep Learning and Sentiment Analysis
Recommender systems are important tools for users to identify their preferred items and for businesses to improve their products and services. In recent years, the use of online services for selection and reservation of hotels have witnessed a booming growth. Customer’ reviews have replaced the word of mouth marketing, but searching hotels based on user priorities is more time-consuming. This s...
متن کاملKnowledge Flows Automation and Designing a Knowledge Management Framework for Educational Organizations
One of an important factor in the success of organizations is the efficiency of knowledge flow. The knowledge flow is a comprehensive concept and in recent studies of organizational analysis broadly considered in the areas of strategic management, organizational analysis and economics. In this paper, we consider knowledge flows from an Information Technology (IT) viewpoint. We usually have tw...
متن کاملDeep Collaborative Autoencoder for Recommender Systems: A Unified Framework for Explicit and Implicit Feedback
In recent years, deep neural networks have yielded state-of-the-art performance on several tasks. Although some recent works have focused on combining deep learning with recommendation, we highlight three issues of existing works. First, most works perform deep content feature learning and resort to matrix factorization, which cannot effectively model the highly complex user-item interaction fu...
متن کاملFederated Meta-Learning for Recommendation
Recommender systems have been widely studied from the machine learning perspective, where it is crucial to share information among users while preserving user privacy. In this work, we present a federated meta-learning framework for recommendation in which user information is shared at the level of algorithm, instead of model or data adopted in previous approaches. In this framework, user-speci...
متن کاملProviding a model based on Recommender systems for hospital services (Case: Shariati Hospital of Tehran)
Background and objectives: In the increasingly competitive market of the healthcare industry, the organizations providing health care services are highly in need of systems that will enable them to meet their clients' needs in order to achieve a high degree of patient satisfaction. To this end, health managers need to identify the factors affecting patient satisfaction focus. T...
متن کامل